
18CS33 Analog & Digital Electronics 

           Prepared by Anupama V & Dhananjaya B  

           Dept. of CSE, CEC 

1 

 

   

 
 

MODULE – 5 

REGISTERS AND COUNTERS 

 
A register consists of a group of flip-flops with a common clock input. Registers are commonly used to 

store and shift binary data. 

Counters are another simple type of sequential circuits. A counter is usually constructed from two or  

more flip-flops which change states in a prescribed sequence when input pulses are received. 

 
REGISTERS AND REGISTER TRANSFERS: 

Several D flip-flops may be grouped together with a common clock to form a register (SEE THE 

FOLLOWING Figure). Since each flip-flop can store one bit of information, this register can store four 

bits of information. This register has a load signal that is ANDed with the clock. 

When Load = 0, the register is not clocked, and it holds its present value. Load = 1, the clock signal (Clk) 

is transmitted to the flip-flop clock inputs and the data applied to the D inputs will be loaded into the flip- 

flops on the falling edge of the clock. 

For example, if the Q outputs are 0000 (Q3 = Q2 = Q1 = Q0 = 0) and the data  inputs are 1101 (D3 = 1,  

D2 = 1, D1 = 0 and D0 = 1), after the falling edge of clock, Q will change from 0000 to 1101 as indicated 

in the above Figure (The notation 0 → 1 at the flip-flop outputs indicates a change from 0 to 1). 

The flip-flops in the register have asynchronous clear inputs that are connected to a common clear signal, 

ClrN. The bubble at the clear inputs indicates that a logic 0 is required to clear the flip-flops. ClrN is 

normally 1, and if it is changed momentarily to 0, the Q outputs of all four flip-flops will become 0. 

 
Gating the clock with another signal can cause timing problems. If flip-flops with clock enable are 

available, the register can be designed as shown in the following Figure (b). 
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The load signal is connected to all four CE inputs. When Load = 0, the clock is disabled and the register 

holds its data. When Load = 1, the clock is enabled, and the data applied to the D inputs will be loaded 

into the flip-flops, following the falling edge of the clock. 

Figure (c) shows a symbol for the 4-bit register using bus notation for the D inputs and Q outputs. A 

group of wires that perform a common function is often referred to as a bus. A heavy line is used to 

represent a bus, and a slash with a number beside it indicates the number of bits in the bus. 

 
Transferring data between registers is a common operation in digital systems. The following Figure  

shows how data can be transferred from the output of one of two registers into a third register using tri- 

state buffers. 

 

 

If En = 1 and Load = 1, the output of register A is enabled onto the tri-state bus and the data in register A 

will be stored in Q after the rising edge of the clock. If En = 0 and Load = 1, the output of register B will 

be enabled onto the tri-state bus and stored in Q after the rising edge of the clock. 
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The following Figure (a) shows an integrated circuit register that contains eight D flip-flops with tri-state 

buffers at the flip-flop outputs. These buffers are enabled when En = 0. A symbol for this 8-bit register is 

shown in Figure (b). 

 

The following Figure (c) shows how data can be transferred from one of four 8-bit registers into one of 

two other registers. Registers A, B, C, and D are of the type shown in above Figure. 

 

The outputs from these registers are all connected in parallel to a common tri-state bus. Registers G and H 

are 8-bit D type registers (PIPO). The flip-flop inputs of registers G and H are also connected to the bus. 

When EnA = 0, the tri-state outputs of register A are enabled onto the bus. If LdG = 1, these signals on  

the bus are loaded into register G after the rising clock edge (or into register H if LdH = 1). Similarly, the 

data in register B, C, or D is transferred to G (or H) when EnB, EnC, or EnD is 0, respectively and LdG = 

1 (or LdH = 1). If LdG = LdH = 1, both G and H will be loaded from the bus. The four  enable signals 

may be generated by a decoder. The operation can be summarized as follows: 

If EF = 00, A is stored in G (or H) If EF = 01, B is stored in G (or H). 

If EF = 10, C is stored in G (or H) If EF = 11, D is stored in G (or H). 

Note that 8 bits of data are transferred in parallel from register A, B, C, or D to register G or H. As an 

alternative to using a bus with tri-state logic, eight 4-to-1 multiplexers could be used, but this would lead 

to a more complex circuit. 
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Parallel Adder with Accumulator: 

In computer circuits, it is frequently desirable to store one number in a register of flip-flops (called an 

accumulator) and add a second number to it, leaving the result stored in the accumulator. 

One way to build a parallel adder with an accumulator is to add a register to the adder as shown in the 

following Figure. 

 

 

Suppose that the number X = xn . . . x2x1 is stored in the accumulator. Then, the number Y = yn . . . y2y1 is 

applied to the full adder inputs, and after the carry has propagated through the adders, the sum of X and Y 

appears at the adder outputs. An add signal (Ad) is used to load the adder outputs into the accumulator 

flip-flops on the rising clock edge. If si = 1, the next state of flip-flop xi  will be 1. If si  = 0, the next state  

of flip-flop xi will be 0.Thus, xi
+ = si, and if Ad = 1, the number X in the accumulator is replaced with the 

sum of X and Y, following the rising edge of the clock. 

Observe that the adder with accumulator is an iterative structure that consists of a number of identical 

cells. Each cell contains a full adder and an associated accumulator flip-flop. Cell i, which has inputs ci 

and yi and outputs ci = 1 and xi, is referred to as a typical cell. 

Before addition can take place, the accumulator must be loaded with X. This can be accomplished in 

several ways. The easiest way is to first clear the accumulator using the asynchronous clear inputs on the 

flip-flops, and then put the X data on the Y inputs to the adder and add to the accumulator in the normal 

way. Alternatively, we could add multiplexers at the accumulator inputs so that we could select either the 

Y input data or the adder output to load into the accumulator. This would eliminate the extra step of 

clearing the accumulator but would add to the hardware complexity. 

The following Figure shows a typical cell of the adder where the accumulator flip-flop can either be 

loaded directly from yi or from the sum output (si).When Ld = 1 the multiplexer selects yi, and yi is loaded 

into the accumulator flip-flop (xi) on the rising clock edge. When Ad = 1 and Ld = 0, the adder output (si) 

is loaded into xi. The Ad and Ld signals are ORed together to enable the clock when either addition or 

loading occurs. When Ad = Ld = 0, the clock is disabled and the accumulator outputs do not change. 



18CS33 Analog & Digital Electronics 

Prepared by Anupama V & Dhananjaya B, Dept. of CSE, CEC 5 

 

 

 

 

 
 

SHIFT REGISTERS: 

A shift register is a register in which binary data can be stored, and this data can be shifted to the left or 

right when a shift signal is applied. Bits shifted out one end of the register may be lost, or if the shift 

register is of cyclic type, bits shifted out one end are shifted back in the other end. 

There are two ways to shift data into a register – serial or parallel; and there are two ways to shift the data 

out of the register – serial or parallel. This leads to the construction of four basic types of registers, as 

shown in the following Figure. All of these configurations are commercially available as TTL MSI/LSI 

circuits. Examples: Serial in – serial out (SISO): 54/74LS91, 8-bits 

Serial in – parallel out (SIPO): 54/74164, 8-bits 

Parallel in – serial out (PISO): 54/74165, 8-bits 

Parallel in – parallel out (PIPO): 54/74194, 4-bits & 54/74168, 8-bits. 

Types of Shift Registers 
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The following Figure (a) illustrates a 4-bit right-shift register with serial input and output constructed 

from D flip-flops. When Shift = 1, the clock is enabled and shifting occurs on the rising clock edge. When 

Shift = 0, no shifting occurs and the data in the register is unchanged. The serial input (SI) is loaded into 

the first flip-flop (Q3) by the rising edge of the clock. At the same time, the output of the first flip-flop is 

loaded into the second flip-flop, the output of the second flip-flop is loaded into the third flip-flop, and the 

output of the third flip-flop is loaded into the last flip-flop. Because of the propagation delay of the flip- 

flops, the output value loaded into each flip-flop is the value before the rising clock edge. 

 

 

Figure (b) illustrates the timing when the shift register initially contains 0101 and the serial input 

sequence is 1, 1, 0, 1.The sequence of shift register states is 0101, 1010, 1101, 0110, 1011. 

 

 

If we connect the serial output to the serial input, as shown by the dashed line, the resulting cyclic shift 

register performs an end-around shift. If the initial contents of the register is 0111, after one clock cycle 

the contents is 1011.After a second pulse, the state is 1101, then 1110, and the fourth pulse returns the 

register to the initial 0111 state. 
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Shift registers with 4, 8, or more flip-flops are available in integrated circuit form. The following Figure 

illustrates an 8-bit serial-in, serial-out shift register. Serial in means that data is shifted into the first flip- 

flop one bit at a time, and the flip-flops cannot be loaded in parallel. Serial out means that data can only  

be read out of the last flip-flop and the outputs from the other flip-flops are not connected to terminals of 

the integrated circuit. 

 
 

The inputs to the first flip-flop are S = SI and R = SI’. Thus, if SI = 1, a 1 is shifted into the register when 

it is clocked, and if SI = 0, a 0 is shifted in. The following Figure shows a typical timing diagram. 

 
 

The following Figure (a) shows a 4-bit parallel-in, parallel-out shift register. Parallel-in implies that all 

four bits can be loaded at the same time, and parallel-out implies that all bits can be read out at the same 

time. The shift register has two control inputs, shift enable (Sh) and load enable (L). If Sh = 1 (and L = 1 

or L = 0), clocking the register causes the serial input (SI) to be shifted into the first flip-flop, while the 

data in flip-flops Q3,Q2, and Q1 are shifted right. If Sh = 0 and L = 1, clocking the shift register will 
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cause the four data inputs (D3, D2, D1, D0) to be loaded in parallel into the flip-flops. If Sh = L = 0, 

clocking the register causes no change of state. 

 

 
 

 

The following Table summarizes the operation of this shift register. All state changes occur immediately 

following the falling edge of the clock. 

 
The shift register can be implemented using MUXes and D flip-flops, as shown in the above Figure (b). 

For the first flip-flop, when Sh = L = 0, the flip-flop Q3 output is selected by the MUX, so Q3+ = Q3 and 

no state change occurs. When Sh = 0 and L = 1, the data input D3 is selected and loaded into the flip-flop. 

When Sh = 1 and L = 0 or 1, SI is selected and loaded into the flip-flop. The second MUX selects Q2,  

D2, or Q3, etc. The next-state equations for the flip-flops are 
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A typical application of this register is the conversion of parallel data to serial data. The output from the 

last flip-flop (Q0) serves as a serial output as well as one of the parallel outputs. The following Figure 

shows a typical timing diagram. 

 

The first clock pulse loads data into the shift register in parallel. During the next four clock pulses, this 

data is available at the serial output. Assuming that the register is initially clear (Q3Q2Q1Q0 = 0000), that 

the serial input is SI = 0 throughout, and that the data inputs D3D2D1D0 are 1011 during the load time 

(t0), the resulting waveforms are as shown. Shifting occurs at the end of t1, t2, and t3, and the serial output 

can be read during these clock times. During t4, Sh = L = 0, so no state change occurs. 

 
The following Figure (a) shows a 3-bit shift register with the Q1 output from the last flip-flop fed back 

into the D input of the first flip-flop. 
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If the initial state of the register is 000, the initial value of D3 is 1, so after the first clock pulse, the 

register state is 100. Successive states are shown on the state graph of Figure (b). When the register is in 

state 001, D3 is 0, and the next register state is 000. Then, successive clock pulses take the register around 

the loop again. Note that states 010 and 101 are not in the main loop. If the register is in state 010, then a 

shift pulse takes it to 101 and vice versa; therefore, we have a secondary loop on the stategraph. 

A circuit that goes through a fixed sequence of states is called a counter. A shift register with inverted 

feedback (Q1’ connected to D3, as shown in above Figure) is often called a Johnson counter or Twisted 

ring counter. A shift register with non-inverted feedback (if Q1 connected to D3, in above Figure) is often 

called a Ring counter. 

 
DESIGN OF BINARY COUNTERS: 

A counter is a sequential circuit that goes through a prescribed sequence of states up on the application of 

input pulse. Counters are in two categories – 

 Ripple (Asynchronous) Counter – consists of a series connection of complementing flip-flops, 

with the output of each flip-flop connected to the clock-pulse input of the next higher-order flip- 

flop. The flip-flop holding the LSB receives the clock-pulse. 

 Synchronous Counter – the input pulses/ clock-pulses are applied to all clock-pulse inputs of all 

the flip-flops simultaneously. 

 

Asynchronous Counters: 
 

3-Bit Binary Ripple Counter, Waveforms & Truth Table 

The above Figure shows three negative-edge-triggered, JK flip-flops connected in cascade to form a 3-bit 

ripple counter. The system clock (a square wave), drives flip-flop A. The output of flip-flop A drives B, 
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and the output of B drives flip-flop C. All the J and K inputs are tied to +VCC. Hence, flip-flops  will 

toggle with a negative transition at its clock input. 

Assume that, the flip-flops are all initially reset to 0 outputs. For every clock NT, flip-flop A will change 

state. Notice that, the waveform at the output of flip-flop A is one-half the clock frequency. 

Since, A acts as clock for B, each time the waveform at A goes low, flip-flop B will toggle. Notice that, 

the waveform at the output of flip-flop B is one-half the frequency of A and one-fourth the clock 

frequency. 

Since, B acts as clock for C, each time the waveform at B goes low, flip-flop C will toggle. The waveform 

at the output of flip-flop C is one-half the frequency of B and one-eighth the clock frequency. 

 
Problem: What is the clock frequency of a 3-bit ripple counter, if the period of the MSB waveform is 24 

µs? 

Solution: Since there are eight clock cycles in one cycle of MSB, the period of the clock must be 24/8 = 3 

µs. The clock frequency must be 1/(3*10–6) = 333 KHz. 

 

NOTE: 

1. A binary ripple counter in  straight 

binary sequence will be as shown in the 

above table. A ripple counter having n 

flip-flops will have 2n output conditions. 

For example, the three-flip-flop counter 

has 23 = 8 output conditions (000 to 

111). 

2. A three-flip-flop counter is often referred to as modulus-8 (or Mod-8) counter, since it has eight 

states. The modulus of a counter is the total number of states through which the counter can 

progress. 

 
Problem: How many flip-flops are required to construct a mod-128 counter? A mod-32 counter? What is 

the largest decimal number that can be stored in a mod-64 counter? 

Solution: A mod-128 counter must have seven flip-flops, since 27 = 128. Five flip-flops are needed to 

construct a mod-32 counter. The largest decimal number that can be stored in a mod-64 (six flip-flops) 

counter is 111111 = 63. 

 
Synchronous Counters: 

Synchronous means the operation of the flip-flops is synchronized by a common clock pulse so that when 

several flip-flops must change state, the state changes occur simultaneously. 

NOTE: 

No. of Flip-Flops 1 2 3 4 5 n 

No. of States 2 4 8 16 32 2n 
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Synchronous Binary Counters Using T Flip-Flops: Consider the following Figure, a binary counter 

using three T flip-flops to count clock pulses. 

 

 
All the flip-flops change state a short time following the rising edge of the input pulse. The state of the 

counter is determined by the states of the individual flip-flops; for example, if flip-flop C is in state 0, B  

in state 1, and A in state 1, the state of the counter is 011. 

Initially, assume that all flip-flops are set to the 0 state. When a clock pulse is received, the counter will 

change to state 001; when a second pulse is received, the state will change to 010, etc. The sequence of 

flip-flop states is CBA = 000, 001, 010, 011, 100, 101, 110, 111, 000, . . . Note that, when the counter 

reaches state 111, the next pulse resets it to the 000 state, and then the sequence repeats. 

First, design the counter by inspection of the counting sequence; then, use a systematic procedure which 

can be generalized to other types of counters. The problem is to determine the flip-flop inputs—TC,TB, 

and TA. From the preceding counting sequence, observe that A changes state every time a clock pulse is 

received. Because A changes state on every rising clock edge, TA must equal 1. Next, observe that B 

changes state only if A = 1.Therefore, A is connected to TB as shown, so that if A = 1, B will change state 

when a rising clock edge occurs. Similarly, C changes state when a rising clock edge occurs only if B and 

A are both 1. Therefore, an AND gate is connected to TC so that C will change state if B = 1 and A = 1 

when a rising clock edge occurs. 

Now, verify that the circuit of above Figure counts properly by tracing signals through the circuit. 

Initially, CBA = 000, so only TA is 1 and the state will change to 001 when the first active clock edge 

arrives. Then, TB = TA = 1, and the state will change to 010 when the second active clock arrives. This 

process continues until finally when state 111 is reached, TC = TB = TA = 1, and all flip-flops return to 

the 0 state. 

A state table (the following Table) shows the present state of flip-flops C, B, and A (before a clock pulse 

is received) and the corresponding next state (after the clock pulse is received). For example, if the flip- 

flops are in state CBA = 011 and a clock pulse is received, the next state will be C+ = B+ = A+ = 100. 

Although the clock is not explicit in the table, it is understood to be the input that causes the counter to go 
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to the next state in sequence. A third column in the table is used to derive the inputs for TC,TB, and TA. 

Whenever the entries in the A and A+ columns differ, flip-flop A must change state and TA must be 1. 

Similarly, if B and B+ differ, B must change state so TB must be 1. For example, if CBA = 011, C+B+A+ = 

100, all three flip-flops must change state, so TCTBTA = 111. 

 

 
 

 
TC, TB, and TA are now derived from the table as functions of C, B, and A. By inspection, TA = 1. The 

following Figure shows the Karnaugh maps for TC and TB, from which; TC = BA and TB = A. These 

equations yield the same circuit derived previously. 
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Synchronous Binary Counters Using D Flip-Flops: Next, redesign the binary counter to use D flip-flops 

instead of T flip flops. The easiest way to do this is to convert each D flip-flop to a T flip-flop by adding 

an XOR (exclusive-OR) gate, as shown in the following Figure (The rightmost XOR gate can be replaced 

with an inverter because A ⊕ 1 = A). 

 

 

 
We can also derive the D flip-flop inputs for the binary counter starting with its state table (given below). 

 

Present State Next State Flip-Flop Inputs 

C B A C B A DC DB DA 

0 0 0 0 0 1 0 0 1 

0 0 1 0 1 0 0 1 0 

0 1 0 0 1 1 0 1 1 

0 1 1 1 0 0 1 0 0 

1 0 0 1 0 1 1 0 1 

1 0 1 1 1 0 1 1 0 

1 1 0 1 1 1 1 1 1 

1 1 1 0 0 0 0 0 0 
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For a D flip-flop, Q+ = D. By inspection of the state table, the maps for DA, DB and DC are plotted as 

follows and D input equations are derived. This give the same logic circuit as was obtained by inspection. 

 

 

 
 

Binary Up-Down Counter: The state graph and table for an up-down counter are shown in the following 

Figure. 

 

When U = 1, the counter counts up in the sequence 000, 001, 010, 011, 100, 101, 110, 111, 000 . . . When 

D = 1, the counter counts down in the sequence 000, 111, 110, 101, 100, 011, 010, 001, 000 . . .When U = 

D = 0, the counter state does not change, and U = D = 1 is not allowed. 

By inspection of the table in above Figure, we can verify that these are the correct equations for a down 

counter. For every row of the table, A+ = A’, so A changes state every clock cycle. For those rows where 

A = 0, B+ = B’. For those rows where B = 0 and A = 0, C+ = C. 

The up-down counter can be implemented using D flip-flops and gates, as shown in the following Figure. 

The corresponding logic equations are also given in the following Figure. 
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When U = 1 and D = 0, these equations reduce to equations for a binary up counter. 
 

When U = 0 and D = 1, these equations reduce to – 
 

 

 
Loadable Counter: The counter shown in the following Figure (a) has two control signals Ld (load) and 

Ct (count). 

 

When Ld = 1 binary data is loaded into the counter on the rising clock edge, and when Ct = 1, the counter 

is incremented on the rising clock edge. When Ld = Ct = 0, the  counter holds its present state.  When Ld 

= Ct = 1, load overrides count, and data is loaded into the counter. The counter also has an asynchronous 
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clear input that clears the counter when ClrN is 0. Figure (b) summarizes the counter operation. All state 

changes occur on the rising edge of the clock (except for the asynchronous clear). 

The following Figure shows how the loadable counter can be implemented using flip-flops, MUXes, and 

gates. 

 
When Ld = 1, each MUX selects a Di input, and because the output of each AND gate is 0, the output of 

each XOR gate is Di, which gets stored in a flip-flop. When Ld = 0 and Ct = 1, each MUX selects one of 

the flip-flop outputs (C, B, or A). The circuit then becomes equivalent to a binary counter, and the counter 

is incremented on the rising clock edge. The next-state equations for the counter of above Figure are – 

When Ld = 0 and Ct = 1, these equations reduce to A+ = A’, B+ = B ⊕ A, and C+ = C ⊕ BA, which are 

the equations previously derived for a 3-bit counter. 

 

COUNTER FOR OTHER SEQUENCES: 

In some applications, the sequence of states of a counter is not in straight binary order. The following 

Figure shows the state graph for such a counter. The arrows indicate the state sequence. 

If this counter is started in state 000, the first clock pulse will take it to state 100, the next pulse to 111, 

etc. The clock pulse is implicitly understood to be the input to the circuit and not shown on the graph. The 

corresponding state table for the counter is given the following Table. Note that the next state is 

unspecified for the present states 001, 101, and 110. 
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We will design the counter specified by the above Table using T flip-flops. We could derive TC, TB, and 

TA directly from this table, as in the preceding example. However, it is often more convenient to plot 

next-state maps showing C+, B+, and A+ as functions of C, B, and A, and then derive TC, TB, and TA 

from these maps. 

Present State Next State Flip-Flop Inputs 

C B A C+ B+ A+ TC TB TA 

0 0 0 1 0 0    

0 0 1 - - -    

0 1 0 0 1 1    

0 1 1 0 0 0    

1 0 0 1 1 1    

1 0 1 - - -    

1 1 0 - - -    

1 1 1 0 1 0    

 
From the first row of the table, the CBA = 000; and hence, the C+, B+, and A+ columns are filled in with 1, 

0, and 0, respectively. From the second row, the CBA = 001; all three columns are filled in with don’t- 

cares. From the third row, the CBA = 010; and the C+, B+, and A+ columns are filled with 0, 1, and 1, 

respectively. The next-state columns can be quickly completed by continuing in this manner. 

Next, we will derive the maps for the T inputs from the next-state maps. 
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Present State Next State Flip-Flop Inputs 

C B A C+ B+ A+ TC TB TA 

0 0 0 1 0 0 1 0 0 

0 0 1 - - - x x x 

0 1 0 0 1 1 0 0 1 

0 1 1 0 0 0 0 1 1 

1 0 0 1 1 1 0 1 1 

1 0 1 - - - x x x 

1 1 0 - - - x x x 

1 1 1 0 1 0 1 0 1 

 

Now, draw the K-maps for TC, TB, and TA separately, and derive the expressions. 
 
 

Finally, draw the counter circuit based on the expressions. 
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NOTE: In the above problem, for the design, initially, when the power is switched on, if circuit enters to 

an invalid state (state 1 or state 5 or state 6), then lock-in condition results. The designed counter will not 

give proper result. For this reason, all of the don’t-care states in a counter should be checked to make sure 

that they eventually lead into the main counting sequence unless a power-up reset is provided. 

The solution is self correcting counter. 
 

 
Counter Design Using D Flip-Flops: For a D flip-flop, Q+ = D, so the D input map is identical with the 

next-state map. 

 

 

 

 

 

 
 

Draw the K-map; and from the map, we 

get the following expressions: 

 

 
Corresponding counter circuit is – 

 

Present State Next State Flip-Flop Inputs 

C B A C+ B+ A+ DC DB DA 

0 0 0 1 0 0 1 0 0 

0 0 1 - - - x x x 

0 1 0 0 1 1 0 1 1 

0 1 1 0 0 0 0 0 0 

1 0 0 1 1 1 1 1 1 

1 0 1 - - - x x x 

1 1 0 - - - x x x 

1 1 1 0 1 0 0 1 0 
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COUNTER DESIGN USING S-R AND J-K FLIP-FLOPS: 

The procedures used to design a counter with S-R OR flip-flops are similar to the procedures discussed. 

However, instead of deriving an input equation for each D or T flip-flop, the S and R input equations  

must be derived. 

The following Table describes the behavior of S-R flip-flops: 

 

Next, we will redesign the counter for following Figure using S-R flip-flops. 

 
 

Draw the K-map; and from the map, we get the expressions for flip-flop inputs. 
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The procedure used to design a counter with J-K flip-flops is very similar to that used for S-R flip-flops. 

The J-K flip-flop is similar to the S-R flip-flop except that J and K can be 1 simultaneously, in which case 

the flip-flop changes state. 

 

 
Now, we will redesign the counter for following Figure using JK flip-flops. 

 

 

 
Draw the K-map; and from the map, we get the expressions for flip-flop inputs; and finally draw the 

counter circuit using J-K flip-flops. 
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Homework: 

1] Construct a 4-bit Johnson counter using 

(a) D flip-flops (b) J-K flip-flops. 
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2] Design a 3-bit counter which counts in the sequence: 

001, 011, 010, 110, 111, 101, 100, (repeat) 001, . . . 

(a) Use D flip-flops (b) Use T flip-flops 

(c) Use S-R flip-flops (d) Use J-K flip-flops. 

3] Design a 3-bit counter which counts in the sequence: 

001, 100, 101, 111, 110, 010, 011, 001, . . . 

(a) Use D flip-flops (b) Use J-K flip-flops 

(c) Use T flip-flops (d) Use S-R flip-flops 

(e) What will happen if the counter of (a) is started in state 000? 

 
 

A SEQUENTIAL PARITY CHECKER: 

When binary data is transmitted or stored, an extra bit (called a parity bit) is frequently added for  

purposes of error detection. For example, if data is being transmitted in groups of 7 bits, an eighth bit can 

be added to each group of 7 bits to make the total number of 1’s in each block of 8 bits an odd number. 

When the total number of 1 bits in the block (including the parity bit) is odd, we say that the parity is odd. 

Alternately, the parity bit could be chosen such that the total number of 1’s in the block is even, in which 

case we would have even parity. Some examples of 8-bit words with odd parity are – 

 

 
If any single bit in the 8-bit word is changed from 0 to 1 or from 1 to 0, the parity is no longer odd. Thus, 

if any single bit error occurs in transmission of a word with odd parity, the presence of this error can be 

detected because the number of 1 bits in the word has been changed from odd to even. 

 
As a simple example of a sequential circuit which has one input in addition to the clock, we will design a 

parity checker for serial data. (Serial implies that the data enters the circuit sequentially, one bit at a time.) 

This circuit has the form shown in the following Figure. 

When a sequence of 0’s and 1’s is applied to the X input, the output of the circuit should be Z = 1, if the 

total number of 1 inputs received is odd; that is, the output should be 1 if the input parity is odd. Thus, if 

data which originally had odd parity is transmitted to the circuit, a final output of Z = 0 indicates that an 

error in transmission has occurred. 
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The value of X is read at the time of the active clock edge. The X input must be synchronized with the 

clock so that it assumes its next value before the next active clock edge. The clock input is necessary in 

order to distinguish consecutive 0’s or consecutive 1’s on the X input. 

 

The sequential  circuit  must  ―remember‖  whether  the total  number  of  1  inputs  received is  even  or  odd; 

therefore, only two states are required. We will designate these states as S0 and S1, corresponding 

respectively to an even number of 1’s received and an odd number of 1’s received. We will start the  

circuit in state S0 because initially zero 1’s have been received, and zero is an even number. 

As indicated in state graph (above Figure), if the circuit is in state S0 (even number of 1’s received) and X 

= 0 is received, the circuit must stay in S0 because the   number of 1’s received is still even. However, if X 

= 1 is received, the circuit goes to state S1 because the number of 1’s received is then odd. 

Similarly, if the circuit is in state S1 (odd number of 1’s received) a 0 input causes no state change, but a 

1 causes a change to S0 because the number of 1’s received is then even. 

The output Z should be 1 whenever the circuit is in state S1 (odd number of 1’s received). The output is 

listed below the state on the state graph. 

The following Table (a) gives the same information as the state graph in tabular form. The table shows 

that if the present state is S0, the output is Z = 0, and if the input is X = 1, the next state will be S1. 

 

Since only two states are required, a single flip-flop (Q) will suffice. We will let Q = 0 correspond to state 

S0 and Q = 1 corresponds to S1. We can then set up a table which shows the next state of flip-flop Q as a 

function of the present state and X. If we use a T flip-flop, T must be 1 whenever Q and Q+ differ. From 

the above Table (b), the T input must be 1 whenever X = 1. The following Figure shows the resulting 

circuit. 
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The following Figure also shows the output waveform for the circuit. When X = 1, the flip-flop changes 

state after the falling edge of the clock. Note that the final value of Z is 0 because an even number of 1’s 

was received. If the number of 1’s received had been odd, the final value of Z would be l. In this case, it 

would be necessary to reset the flip-flop to the proper initial state (Q = 0) before checking the parity of 

another input sequence. 

 

 

 

 
STATE TABLES AND GRAPHS: 

The state tables and graphs provides a more systematic approach which is useful for the analysis of larger 

circuits and which leads to a general synthesis procedure for sequential circuits. The state table specifies 

the next state and output of a sequential circuit in terms of its present state and input. 

The following method can be used to construct the state table: 

1. Determine the flip-flop input equations and the output equations from the circuit. 

2. Derive the next-state equation for each flip-flop from its input equations, using one of the 

following relations: 

 

3. Plot a next-state map for each flip-flop. 

4. Combine these maps to form the state table. Such a state table, which gives the next state of the 

flip-flops as a function of their present state and the circuit inputs, is frequently referred to as a 

transition table. 
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Example: Derive the state table for the circuit of the following Figure (Moore Model): 

 

1. The flip-flop input equations and output equation are 

DA  = X ⊕ B’ DB  = X + A Z = A ⊕ B 

2. The next-state equations for the flip-flops are 

A+ = X ⊕ B’ B+ = X + A 

3. The corresponding maps are 
 

 

 

4. Combining these maps yields the transition table (Table (a)), which gives the next state of both 

flip-flops (A+B+) as a function of the present state and input. The output function Z is then added 

to the table. In this example, the output depends only on the present state of the flip-flops and not 

on the input, so only a single output column is required. 
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Using the above Table (a), we can construct the timing chart for some given input sequence and specified 

initial state. 

Initially AB = 00 and X = 0, so Z = 0 and A+B+ = 10. This means that after the rising clock edge, the flip- 

flop state will be AB = 10. Then, with AB = 10, the output is Z = 1. The next input is X = 1, so A+B+ = 01 

and the state will change after the next rising clock edge. Continuing in this manner, we can complete the 

timing chart. 

If we are not interested in the individual flip-flop states, we can replace each combination of flip-flop 

states with a single symbol which represents the state of the circuit. Replacing 00 with S0, 01 with S1, 11 

with S2, and 10 with S3 in Table (a) yields Table (b). The Z column is labeled Present Output because it 

is the output associated with the Present State. 

 
The state graph of (given in above Figure) represents Table (b). Each node of the graph represents a state 

of the circuit, and the corresponding output is placed in the circle below the state symbol. The arc joining 

two nodes is labeled with the value of X which will cause a state change between these nodes. Thus, if the 

circuit is in state S0 and X = 1, a clock edge will cause a transition to state S1. 
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Example: Derive the state table for the circuit of the following Figure (Mealy Model): 

 

 
The next-state and output equations are – 

 

 

The next-state and output maps (following Figure) combine to form the transition table (shown in Table 

(a)). Given values for A, B, and X, the current value of the output is determined from the Z column of this 

table, and the states of the flip-flops after the active clock edge are determined from the A+B+ columns. 

 

 
We can construct the timing chart of (given in the following Figure) using Table (a) (given below). 
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Initially with A = B - 0 and X = 1, the table shows that Z = 1 and A+B+ = 01. Therefore, after the falling 

clock edge, the state of flip-flop B will change to 1, as indicated in above Figure. Now, from the 01 row  

of the table, if X is still 1, the output will be 0 until the input is changed to X = 0. Then, the output is Z = 

1, and the next falling clock edge produces no state change. Finish stepping through the state table in this 

manner and verify that A, B, and Z are as given in the above Figure. 

If we let AB = 00 correspond to circuit state S0, 01 to S1, 11 to S2, and 10 to S3, we can construct the 

state table as given in Table (b) and the state graph of the following Figure. 

 

 
In Table (b), the Present Output column gives the output associated with the present state and present 

input. Thus, if the present state is S0 and the input changes from 0 to 1, the output will immediately 

change from 0 to 1. However, the state will not change to the next state (S1) until after the clock pulse. 

For the above Figure (Mealy State Graph), the labels on the arrows between states are of the form X/Z, 

where the symbol before the slash is the input and the symbol after the slash is the corresponding output. 
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Thus, in state S0 an input of 0 gives an output of 0, and an input of 1 gives an output of 1. For any given 

input sequence, we can easily trace out the state and output sequences on the state graph. For the input 

sequence X = 10101, verify that the corresponding output sequence is 11001. This agrees with timing 

chart; if the false outputs are ignored. Note that the false outputs do not show on the state graph because 

the inputs are read at the active clock edge, and no provision is made for extra input changes between 

active edges. 

 
Operation of Serial Adder: 

Consider a serial adder [following Figure (a)] that adds two n-bit binary numbers X = xn-1 . . . x1x0 and Y 

= yn-1 . . . y1y0. 
 

 

 

 

The binary numbers are fed in serially, one pair of bits at a time, and the sum is read out serially, one bit  

at a time. First, x0 and y0 are fed in; a sum digit s0 is generated,  and the carry c1  is stored.  At the next  

clock time, x1 and y1 are fed in and added to c1 to give the next sum digit s1 and the new carry c2, which is 
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stored. This process continues until all bits have been added. A full adder is used to add the xi, yi, and ci 

bits to form ci+1 and si. A D flip-flop is used to store the carry (ci+1) on the rising edge of the clock. The xi 

and yi inputs must be synchronized with the clock. 

The above Figure also shows a timing diagram for the serial adder. In this example, we add 10011 + 

00110 to give a sum of 11001 and a final carry of 0. Initially the carry flip-flop  must be cleared so that  c0 

= 0.We start by adding the least-significant (rightmost) bits in each word. Adding 1 + 0 + 0 gives s0 = 1 

and c1  = 0, which is stored in the flip-flop at the rising clock edge. Since y1  is 1, adding 1 + 1 + 0 gives  s1 

= 0 and c2 = 1, which is stored in the flip-flop on the rising clock edge. This process continues until the 

addition is completed. Reading the sum output just before the rising edge of the clock gives the correct 

result. 

Using the truth table for the full adder (Table given with above Figure), we can construct a state graph 

(following Figure) for the serial adder. 

 

 
 

The serial adder is a Mealy machine with inputs xi and yi and output si. The two states represent a carry  

(ci) of 0 and 1, respectively. From the table, ci is the present state of the sequential circuit, and ci+1 is the 
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next state. If we start in S0 (no carry), and xi yi = 11, the output is si = 0 and the next state is S1.This is 

indicated by the arrow going from state S0 to S1. 

The above Table is the state table for a Mealy sequential circuit with two inputs and two outputs. The 

above Figure also shows the corresponding state graph. The notation 00, 01/00 on the arc from S3 to S2 

means if X1 = X2 = 0 or X1 = 0 and X2 = 1, then Z1 = 0 and Z2 = 0. 

 
Construction and Interpretation of Timing Charts: 

Several important points concerning the construction and interpretation of timing charts are summarized 

as follows: 

1. When constructing timing charts, note that a state change can only occur after the rising (or 

falling) edge of the clock, depending on the type of flip-flop used. 

2. The input will normally be stable immediately before and after the active clock edge. 

3. For a Moore circuit, the output can change only when the state changes, but for a Mealy circuit, 

the output can change when the input changes as well as when the state changes. A false output 

may occur between the time the state changes and the time the input is changed to its new value. 

(In other words, if the state has changed to its next value, but the old input is still present, the 

output may be temporarily incorrect). 

4. False outputs are difficult to determine from the state graph, so use either signal tracing through 

the circuit or use the state table when constructing timing charts for Mealy circuits. 

5. When using a Mealy state table for constructing timing charts, the procedure is as follows: 

a) For the first input, read the present output and plot it. 

b) Read the next state and plot it (following the active edge of the clock pulse). 

c) Go to the row in the table which corresponds to the next state and read the output 

under the old input column and plot it. (This may be a false output). 

d) Change to the next input and repeat steps (a), (b), and (c). (Note: If you are just trying 

to read the correct output sequence from the table, step (c) is naturally omitted). 

6. For Mealy circuits, the best time to read the output is just before the active edge of the clock, 

because the output should always be correct at that time. 

 
The example in the following Figure shows a state graph, a state table, a circuit that implements the table, 

and a timing chart. 

When the state is S0 and the input is X = 0, the output from the state graph, state table, circuit, and timing 

chart is Z = 1 (labeled A on the figure). Note that this output occurs before the rising edge of the clock. In 

a Mealy circuit, the output is a function of the present state and input; therefore, the output should be read 

just before the clock edge that causes the state to change. 
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As you continue to study this example, each time the input X changes, trace the changes on the state  

graph, the state table, the circuit, and the timing chart. Because the input X was 0 before the first rising 

edge of the clock, the state changes to S1 after the first rising edge of the clock. Because of the state 

change, the output also changes (B on the timing chart), but because the input has not yet changed to its 

new value, the output value may not be correct. We refer to this as a false output or glitch. If the input 

changes several times before it assumes its correct value, the output may also change several times (C). 

The input must assume its correct value before the rising edge of the clock, and the output should be read 

at this time (D). After the rising clock edge, the state stays the same and the output stays the same for this 

particular example. In general, the state may change after a rising edge of the clock, and the state change 

may result in an output change. Again, the output value may be wrong because the input still has the old 

value (E).When the input is changed to its new value, the output changes to its new value (F), and this 

value should be read before the next rising clock edge. If we look at the input and output just before each 

rising edge of the clock, we find the following sequences: X = 0 1 0 

Z =1 1 0 

You should be able to verify the sequence for Z using the state graph, using the state table, and using the 

circuit diagram. 
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Question Bank 

1] Construct a state graph for the shift register shown. (X is the input, and Z is the output). Is this a Mealy 

or Moore machine? 

 

2] Below is a state transition table with the outputs missing. The output should be Z = X’B’ + XB. 
 

 

(a) Is this a Mealy machine or Moore machine? 

(b) Fill in the outputs on the state transition table. 

(c) Give the state graph. 

(d) For an input sequence of X = 10101, give a timing diagram for the clock, X, A, B, C, and Z. State 

changes occur on the rising clock edge. What is the correct output sequence for Z? Change X between 

rising and falling clock edges so that we can see false outputs, and indicate any false outputs on the 

diagram. 

3] (a) Construct a state table and graph for the circuit shown. 

(b)  Construct a timing chart for the circuit for an input sequence X = 10111. (Assume that initially 

Q1 = Q2 = 0 and that X changes midway between the rising and falling clock edges.) 

(c) List the output values produced by the input sequence. 
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4] Consider the circuit shown. 

(a) Construct a state table and graph for the following circuit. Is the circuit a Mealy or Moore circuit? 

Does the circuit have any unused states? Assume 00 is the initial state. 

(b) Draw a timing diagram for the input sequence X = 01100. 

(c) What is the output sequence for the input sequence? 
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